Using the TryGet pattern in C# to clean up your code

Modern C# allows you to declare output variables inline; this has a subtle benefit of making TryFoo methods more attractive and cleaning up your code. Consider this:

public class FooCollection : ICollection<Foo>
{
  // ICollection<Foo> members omitted for brevity
  public Foo GetFoo(string fooIdentity)
  {
    return this.FirstOrDefault(foo => foo.Identity == fooIdentity);
  }
}

// somewhere else in the code
var foo = foos.GetFoo("dave");
if (foo != null)
{
  foo.Fight();
}

Our GetFoo method will return a default of Foo if one isn’t found that matches fooIdentity — code that uses this API needs to know that null indicates that no matching item was found. This isn’t unreasonably, but it does mean that we’re using two lines to find and assign our matching object. Instead, let’s try this approach:

public class FooCollection : ICollection<Foo>
{
  public bool TryGetFoo(string fooIdentity, out Foo fighter)
  {
    figher = this.FirstOrDefault(foo => foo.Identity == fooIdentity);
    return fighter != null;
  }
}

We’ve encoded the knowledge that null means “not found” directly into our method, and there’s no longer any ambiguity about whether we found our fighter or not. Our calling code can now be reduced by a line:

if (foos.TryGetFoo("dave", out foo))
{
  foo.Fight();
}

It’s not a huge saving on its own, but if you have a class of several hundred lines that’s making heavy use of the GetFoo method, this can save you a significant number of lines, and that’s always a good thing.

Dependency Injection with Model State Validation in ASP.NET Core

(caveat: this may or may not work in normal ASP.NET, I haven’t tried it yet)

“Validation” is a wonderfully ambiguous term. Usually, in simple examples, it’s restricted to ensuring that required fields are present, that dates are in the correct format, and so on. All of these only require access to the object being validated, which can be very easily done using data annotations:

using System;
using System.ComponentModel.DataAnnotations;

public class ValidateMe
{
  [Required]
  [StringLength(50)]
  public string ImARequiredField { get; set; }
}

You can take this a step further if, for example, you want to run rules on the data in the object. An example:

using System;
using System.ComponentModel.DataAnnotations;

public class ValidateMe : IValidatableObject
{
  [StringLength(50)]
  public string ImARequiredField { get; set; }

  public bool TheFieldIsRequired { get; set; }

  public IEnumerable<ValidationResult> Validate(ValidationContext validationContext)
  {
    if (TheFieldIsRequired)
    {
      yield return new ValidationResult("The field is required", new string[] { nameof(ImARequiredField) });
    }
  }
}

Great! Now we can wire this up in our controller:

public IActionResult DoStuff(ValidateMe model)
{
  if (ModelState.IsValid)
  {
    // do stuff!
  }
  else
  {
    return View(model);
  }
}

Fantastic! But wait, what’s this? Oh dear, it’s the Real World(TM) come to burst our bubble.

Let’s take a more realistic example. Let’s say that we have a model that needs to set up a new user account. In our system, email addresses must be unique, and so we need to validate this before saving the user. We want to have a nice, clean, de-coupled architecture with injected dependencies, but where can we inject the dependencies into our validation system? Without them, we’d end up like this:

public IActionResult AddUser(AddUserModel model, [FromServices] IEmailValidator emailValidator)
{
  if (!emailValidator.IsEmailAvailable(model.Email))
  {
    ModelState.AddModelError("Email", "Email address is taken");
  }

  if (ModelState.IsValid)
  {
    // do stuff!
  }
  else
  {
    return View(model);
  }
}

Well, that’s ugly – it’s not terrible, but it’s bloating our controller, and, it turns out, we don’t need to do it at all, because enter ValidationContext!

public IEnumerable<ValidationResult> Validate(ValidationContext validationContext)
{
  // magic happens here!
  var emailValidator = validationContext.GetService(typeof(IEmailValidator));

  // now I has dependency, I can use ftw!
  if (!emailValidator.IsEmailAvailable(Email))
  {
    yield return new ValidationResult("Email address is taken", new string[] { nameof(Email) });
  }
}

Without doing anything special, ASP.NET is clever enough to pass its IServiceProvider into ValidationContext, and so we now have access to any dependencies that our application needs. The only slight downside is that the Validate method isn’t async, and so we’ll need to wrap any async calls in Task.Run(...) calls, but that’s a small price to pay for keeping our controllers slim.